Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Chem ; 11: 1217506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426330

RESUMO

Molecular dynamic (MD) simulations offer a way to study biomolecular interactions and their dynamics at the atomistic level. There are only a few studies of RNA-protein complexes in MD simulations, and here we wanted to study how force fields differ when simulating RNA-protein complexes: 1) argonaute 2 with bound guide RNA and a target RNA, 2) CasPhi-2 bound to CRISPR RNA and 3) Retinoic acid-inducible gene I C268F variant in complex with double-stranded RNA. We tested three non-polarizable force fields: Amber protein force fields ff14SB and ff19SB with RNA force field OL3, and the all-atom OPLS4 force field. Due to the highly charged and polar nature of RNA, we also tested the polarizable AMOEBA force field and the ff19SB and OL3 force fields with a polarizable water model O3P. Our results show that the non-polarizable force fields lead to compact and stable complexes. The polarizability in the force field or in the water model allows significantly more movement from the complex, but in some cases, this results in the disintegration of the complex structure, especially if the protein contains longer loop regions. Thus, one should be cautious when running long-scale simulations with polarizability. As a conclusion, all the tested force fields can be used to simulate RNA-protein complexes and the choice of the optimal force field depends on the studied system and research question.

2.
Eur J Med Chem ; 237: 114358, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35462163

RESUMO

Alzheimer's disease (AD) is a widespread multifactorial aging-related pathology, which includes cholinergic deficit among its main causes. Following a multi-target design strategy, the structure of the approved drug donepezil was taken as the starting point for generating some new potential multi-functional compounds. Therefore, a series of twenty molecular hybrids were synthesized and assayed against three different enzymes, namely the well-established targets acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the innovative one fatty acid amide hydrolase (FAAH). In silico studies confirmed the interaction of benzylpiperidine and the benzylpiperazine isostere with the catalytic anionic site (CAS) of AChE, while the aryloxycarbonyl portion appeared to be important for the interaction with the peripheral site (PAS). A QSAR study was carried out on AChE inhibition data, which revealed that the inhibition potency seems to depend upon the length of the spacer and the number of polar atoms. The docking poses of selected compounds within BChE and FAAH were also calculated. Furthermore, pharmacokinetics and drug-likeness properties were assessed by chemoinformatic tools. Several piperidine derivatives (in particular compound 10) showed interesting profiles as multi-target directed agents, while the lead piperazine derivative 12 (SON38) was found to be a more potent and selective AChE inhibitor (IC50 = 0.8 nM) than donepezil, besides being able to bind bivalent copper cations (pCu = 7.9 at physiological pH). Finally, the selected lead compounds (10 and 12, SON38) did not show significant cytotoxicity on SH-SY5Y and HepG2 cells at the highest tested concentration (100 µM) in a MTT assay.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Donepezila/farmacologia , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Front Pharmacol ; 13: 844293, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359865

RESUMO

An increasing number of crystal structures available on one side, and the boost of computational power available for computer-aided drug design tasks on the other, have caused that the structure-based drug design tools are intensively used in the drug development pipelines. Docking and molecular dynamics simulations, key representatives of the structure-based approaches, provide detailed information about the potential interaction of a ligand with a target receptor. However, at the same time, they require a three-dimensional structure of a protein and a relatively high amount of computational resources. Nowadays, as both docking and molecular dynamics are much more extensively used, the amount of data output from these procedures is also growing. Therefore, there are also more and more approaches that facilitate the analysis and interpretation of the results of structure-based tools. In this review, we will comprehensively summarize approaches for handling molecular dynamics simulations output. It will cover both statistical and machine-learning-based tools, as well as various forms of depiction of molecular dynamics output.

4.
Bioorg Med Chem Lett ; 49: 128275, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311086

RESUMO

Despite the better understanding of the mechanisms underlying Alzheimer's Disease (AD) and launched clinical trials, no AD-modifying treatment based on a synthetic drug has been introduced for almost twenty years. The serotonin 5-HT6 and 5-HT7 receptors turned out to be promising biological targets for modulation of central nervous system dysfunctions including cognitive impairment. Within this paper, we evaluate the pharmacological potency of both, 5-HT6R and 5-HT7R, agents in search for novel AD treatment. An overview of chemical structures of the 5-HTRs ligands with simultaneous procognitive action which have undergone preclinical and clinical studies within the last 10 years has been performed.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Nootrópicos/uso terapêutico , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/uso terapêutico , Agonistas do Receptor de Serotonina/uso terapêutico , Animais , Humanos , Nootrópicos/química , Antagonistas da Serotonina/química , Agonistas do Receptor de Serotonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA